An
expert on the subject should have a look at this article or section.
Please help recruit one or improve this article yourself. See the talk page for details.
In complex analysis , contour integration is a way to calculate an integral around a contour on the complex plane . In other words, it is a way of integrating along the complex plane.
More specifically, given a complex-valued function
f
{\displaystyle f}
and a contour
C
{\displaystyle C}
, the contour integral of
f
{\displaystyle f}
along
C
{\displaystyle C}
is written as
∫
C
f
(
z
)
d
z
{\displaystyle \textstyle \int _{C}f(z)\,dz}
or
∮
C
f
(
z
)
d
z
{\displaystyle \textstyle \oint _{C}f(z)\,dz}
.[ 1] [ 2]
Calculating contour integrals with the residue theorem
change
Multivariable contour integrals
change
To solve multivariable contour integrals (contour integrals on functions of several variables), such as surface integrals, complex volume integrals and higher order integrals , we must use the divergence theorem . For right now, let
∇
{\displaystyle \nabla }
be interchangeable with
Div
{\displaystyle {\text{Div}}}
. These will both serve as the divergence of the vector field written as
F
{\displaystyle \mathbf {F} }
. This theorem states that:
∫
⋯
∫
U
⏟
n
Div
(
F
)
d
V
=
∮
⋯
∮
∂
U
⏟
n
−
1
F
⋅
n
d
S
{\displaystyle \underbrace {\int \cdots \int _{U}} _{n}{\text{Div}}(\mathbf {F} )\,dV=\underbrace {\oint \cdots \oint _{\partial U}} _{n-1}\mathbf {F} \cdot \mathbf {n} \,dS}
In addition, we also need to evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
, where
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
is an alternate notation of
div
F
{\displaystyle {\text{div}}\,\mathbf {F} }
. [ 1] The divergence of any dimension can be described as
Div
F
=
∇
⋅
F
=
(
∂
∂
u
,
∂
∂
x
,
∂
∂
y
,
∂
∂
z
,
⋯
)
⋅
(
F
u
,
F
x
,
F
y
,
F
z
⋯
)
=
(
∂
F
u
∂
u
+
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
⋯
)
{\displaystyle {\begin{aligned}&\operatorname {Div} {\mathbf {F} }\\\\&=\nabla \cdot {\textbf {F}}\\\\&=\left({\frac {\partial }{\partial u}},{\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}},\cdots \right)\cdot (F_{u},F_{x},F_{y},F_{z}\cdots )\\\\&=\left({\frac {\partial F_{u}}{\partial u}}+{\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\cdots \right)\end{aligned}}}
The following examples illustrate the use of divergence theorem in the calculation of multivariate contour integrals.
Let the vector field
F
=
sin
(
2
x
)
+
sin
(
2
y
)
+
sin
(
2
z
)
{\displaystyle \mathbf {F} =\sin(2x)+\sin(2y)+\sin(2z)}
be bounded by the following conditions
0
≤
x
≤
1
0
≤
y
≤
3
π
−
1
≤
z
≤
4
{\displaystyle {0\leq x\leq 1}\quad {0\leq y\leq 3\pi }\quad {-1\leq z\leq 4}}
The corresponding double contour integral would be set up as such:
{\displaystyle }
S
{\displaystyle {\scriptstyle S}}
F
⋅
n
d
S
{\displaystyle {\mathbf {F} \cdot n}\,{\rm {d}}\,S}
We now evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
by setting up the corresponding triple integral:
=
∭
V
(
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
)
d
V
=
∭
V
(
∂
sin
(
2
x
)
∂
x
+
∂
sin
(
2
y
)
∂
y
+
∂
sin
(
2
z
)
∂
z
)
d
V
=
∭
V
=
2
(
cos
(
2
x
)
+
cos
(
2
y
)
+
cos
(
2
z
)
)
d
V
{\displaystyle {\begin{aligned}&=\iiint _{V}\left({\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\right)\,dV\\\\&=\iiint _{V}\left({\frac {\partial \sin(2x)}{\partial x}}+{\frac {\partial \sin(2y)}{\partial y}}+{\frac {\partial \sin(2z)}{\partial z}}\right)\,dV\\\\&=\iiint _{V}{=2(\cos(2x)+\cos(2y)+\cos(2z))}\,dV\end{aligned}}}
From this, we can now evaluate the integral as follows:
∫
0
1
∫
0
3
∫
−
1
4
2
(
cos
(
2
x
)
+
cos
(
2
y
)
+
cos
(
2
z
)
)
d
x
d
y
d
z
=
∫
0
1
∫
0
3
(
10
cos
(
2
y
)
+
sin
(
8
)
+
sin
(
2
)
+
10
cos
(
z
)
)
d
y
d
z
=
∫
0
1
(
30
cos
(
2
z
)
+
3
sin
(
2
)
+
3
sin
(
8
)
+
5
sin
(
6
)
)
d
z
=
18
sin
(
2
)
+
3
sin
(
8
)
+
5
sin
(
6
)
{\displaystyle {\begin{aligned}&\int _{0}^{1}\int _{0}^{3}\int _{-1}^{4}2(\cos(2x)+\cos(2y)+\cos(2z))\,dx\,dy\,dz\\\\&=\int _{0}^{1}\int _{0}^{3}(10\cos(2y)+\sin(8)+\sin(2)+10\cos(z))\,dy\,dz\\\\&=\int _{0}^{1}(30\cos(2z)+3\sin(2)+3\sin(8)+5\sin(6))\,dz\\\\&=18\sin(2)+3\sin(8)+5\sin(6)\end{aligned}}}
Given the vector field
F
=
u
4
+
x
5
+
y
6
+
z
−
3
{\displaystyle \mathbf {F} =u^{4}+x^{5}+y^{6}+z^{-3}}
and
n
{\displaystyle n}
being the fourth dimension. Let this vector field be bounded by the following:
0
≤
x
≤
1
−
10
≤
y
≤
2
π
4
≤
z
≤
5
−
1
≤
u
≤
3
{\displaystyle {0\leq x\leq 1}\quad {-10\leq y\leq 2\pi }\quad {4\leq z\leq 5}\quad {-1\leq u\leq 3}}
To evaluate this, we use the divergence theorem as stated before, and evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
afterwards. Let
d
V
=
d
x
d
y
d
z
d
u
{\displaystyle \,dV=\,dx\,dy\,dz\,du}
, then:
S
{\displaystyle {\scriptstyle S}}
F
⋅
n
d
S
{\displaystyle \mathbf {F} \cdot n\,{\rm {d}}{\mathbf {S}}}
=
⨌
V
(
∂
F
u
∂
u
+
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
)
d
V
=
⨌
V
(
∂
u
4
∂
u
+
∂
x
5
∂
x
+
∂
y
6
∂
y
+
∂
z
−
3
∂
z
)
d
V
=
⨌
V
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
{\displaystyle {\begin{aligned}&=\iiiint _{V}\left({\frac {\partial F_{u}}{\partial u}}+{\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\right)\,dV\\\\&=\iiiint _{V}\left({\frac {\partial u^{4}}{\partial u}}+{\frac {\partial x^{5}}{\partial x}}+{\frac {\partial y^{6}}{\partial y}}+{\frac {\partial z^{-3}}{\partial z}}\right)\,dV\\\\&=\iiiint _{V}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\end{aligned}}}
From this, we now can evaluate the integral:
⨌
V
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
=
∫
0
1
∫
−
10
2
π
∫
4
5
∫
−
1
3
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
=
∫
0
1
∫
−
10
2
π
∫
4
5
(
4
(
3
u
4
z
3
+
3
y
6
+
91
z
3
+
3
)
3
z
3
)
d
y
d
z
d
u
=
∫
0
1
∫
−
10
2
π
(
4
u
4
+
743440
21
+
4
z
3
)
d
z
d
u
=
∫
0
1
(
−
1
2
π
2
+
1486880
π
21
+
8
π
u
4
+
40
u
4
+
371720021
1050
)
d
u
=
371728421
1050
+
14869136
π
3
−
105
210
π
2
≈
576468.77
{\displaystyle {\begin{aligned}&\iiiint _{V}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\int _{4}^{5}\int _{-1}^{3}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\int _{4}^{5}\left({\frac {4(3u^{4}z^{3}+3y^{6}+91z^{3}+3)}{3z^{3}}}\right)\,dy\,dz\,du\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\left(4u^{4}+{\frac {743440}{21}}+{\frac {4}{z^{3}}}\right)\,dz\,du\\\\&=\int _{0}^{1}\left(-{\frac {1}{2\pi ^{2}}}+{\frac {1486880\pi }{21}}+8\pi u^{4}+40u^{4}+{\frac {371720021}{1050}}\right)\,du\\\\&={\frac {371728421}{1050}}+{\frac {14869136\pi ^{3}-105}{210\pi ^{2}}}\\\\&\,\approx {576468.77}\end{aligned}}}
Thus, we can evaluate a contour integral of the fourth dimension.