Repunit

number that contains only the digit 1

A repunit is a number like 11, 111, or 1111. It only has the digit 1 in it. It is a more specific type of repdigit. The term stands for repeated unit and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.[note 1]

A repunit prime is a repunit that is also a prime number. Primes that are repunits in base-2 are Mersenne primes.

Definition

change

The base-b repunits can be written as this where b is the base and n is the number that you are checking in whether or not it is a repunit:

 

This means that the number Rn(b) is made of of of n copies of the digit 1 in base-b representation. The first two repunits base-b for n = 1 and n = 2 are

 

The first of repunits in base-10 are with

1, 11, 111, 1111, 11111, 111111, ... (sequence A002275 in the OEIS).

Base-2 repunits are also Mersenne numbers Mn = 2n − 1. They start with

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, ... (sequence A000225 in the OEIS).

Factorization of decimal repunits

change

Prime factors that are red are "new factors" that haven't been mentioned before. Basically, the prime factor divides Rn but does not divide Rk for all k < n. (sequence A102380 in the OEIS)[2]

R1 = 1
R2 = 11
R3 = 3 · 37
R4 = 11 · 101
R5 = 41 · 271
R6 = 3 · 7 · 11 · 13 · 37
R7 = 239 · 4649
R8 = 11 · 73 · 101 · 137
R9 = 32 · 37 · 333667
R10 = 11 · 41 · 271 · 9091
R11 = 21649 · 513239
R12 = 3 · 7 · 11 · 13 · 37 · 101 · 9901
R13 = 53 · 79 · 265371653
R14 = 11 · 239 · 4649 · 909091
R15 = 3 · 31 · 37 · 41 · 271 · 2906161
R16 = 11 · 17 · 73 · 101 · 137 · 5882353
R17 = 2071723 · 5363222357
R18 = 32 · 7 · 11 · 13 · 19 · 37 · 52579 · 333667
R19 = 1111111111111111111
R20 = 11 · 41 · 101 · 271 · 3541 · 9091 · 27961
R21 = 3 · 37 · 43 · 239 · 1933 · 4649 · 10838689
R22 = 112 · 23 · 4093 · 8779 · 21649 · 513239
R23 = 11111111111111111111111
R24 = 3 · 7 · 11 · 13 · 37 · 73 · 101 · 137 · 9901 · 99990001
R25 = 41 · 271 · 21401 · 25601 · 182521213001
R26 = 11 · 53 · 79 · 859 · 265371653 · 1058313049
R27 = 33 · 37 · 757 · 333667 · 440334654777631
R28 = 11 · 29 · 101 · 239 · 281 · 4649 · 909091 · 121499449
R29 = 3191 · 16763 · 43037 · 62003 · 77843839397
R30 = 3 · 7 · 11 · 13 · 31 · 37 · 41 · 211 · 241 · 271 · 2161 · 9091 · 2906161

The smallest prime factors of Rn for n > 1 are

11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239, 11, ... (sequence A067063 in the OEIS)
change

Footnotes

change
  1. Albert H. Beiler coined the term “repunit number” as follows:

    A number which consists of a repeated of a single digit is sometimes called a monodigit number, and for convenience the author has used the term “repunit number” (repeated unit) to represent monodigit numbers consisting solely of the digit 1.[1]

References

change
  1. Beiler 2013, pp. 83
  2. For more information, see Factorization of repunit numbers.

Further reading

change
  • Beiler, Albert H. (2013) [1964], Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Recreational Math (2nd Revised ed.), New York: Dover Publications, ISBN 978-0-486-21096-4
  • Dickson, Leonard Eugene; Cresse, G.H. (1999), History of the Theory of Numbers, Volume I: Divisibility and primality (2nd Reprinted ed.), Providence, RI: AMS Chelsea Publishing, ISBN 978-0-8218-1934-0
  • Francis, Richard L. (1988), "Mathematical Haystacks: Another Look at Repunit Numbers", The College Mathematics Journal, 19 (3): 240–246, doi:10.1080/07468342.1988.11973120
  • Gunjikar, K. R.; Kaprekar, D. R. (1939), "Theory of Demlo numbers" (PDF), Journal of the University of Bombay, VIII (3): 3–9
  • Kaprekar, D. R. (1938a), "On Wonderful Demlo numbers", The Mathematics Student, 6: 68, archived from the original on 2009-02-10, retrieved 2022-03-08
  • Kaprekar, D. R. (1938b), "Demlo numbers", J. Phys. Sci. Univ. Bombay, VII (3)
  • Kaprekar, D. R. (1948), Demlo numbers, Devlali, India: Khareswada
  • Ribenboim, Paulo (1996-02-02), The New Book of Prime Number Records, Computers and Medicine (3rd ed.), New York: Springer, ISBN 978-0-387-94457-9
  • Yates, Samuel (1982), Repunits and repetends, FL: Delray Beach, ISBN 978-0-9608652-0-8

Other websites

change