Terrestrial locomotion
Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial places. Movement on land makes different problems than that on water, with less friction instead being the effects of gravity.
There are three basic forms of movement found among land animals:
- Legged - Moving by using legs
- Limbless locomotion - moving without legs, mostly using the body
- Rolling - rotating the body
Legged locomotion
changeMovement on legs is the most common form of land movement. It is the simple form of movement of two big groups with many members, the vertebrates and the arthropods.
Limbless locomotion
changeThere are a number of land and amphibious limbless vertebrates and invertebrates. These animals, due to lack of legs, use their bodies to move. These movements are sometimes called to as "slithering" or "crawling".
Rolling
changeAlthough animals have never have wheels for locomotion,[1][2] some animals can move by rolling their whole body.
Limits and extremes
changeThe fastest terrestrial animal is the cheetah, which can get speeds of about 104 km/h (64 mph).[3][4]
Related pages
changeReferences
change- ↑ LaBarbera, M. (1983). "Why the wheels won't go". American Naturalist. 121 (3): 395–408. doi:10.1086/284068. S2CID 84618349.
- ↑ Richard Dawkins (November 24, 1996). "Why don't animals have wheels?". Sunday Times. Archived from the original on February 21, 2007. Retrieved 2008-08-03.
- ↑ Garland, T., Jr. (1983). "The relation between maximal running speed and body mass in terrestrial mammals" (PDF). Journal of Zoology, London. 199 (2): 155–170. doi:10.1111/j.1469-7998.1983.tb02087.x. Archived from the original (PDF) on 2018-08-31. Retrieved 2010-10-07.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Sharp, N. C. (1994). "Timed running speed of a cheetah (Acinonyx jubatus)". Journal of Zoology, London. 241 (3): 493–494. doi:10.1111/j.1469-7998.1997.tb04840.x.
- Charig, A.J. (1972) The evolution of the archosaur pelvis and hind-limb: an explanation in functional terms. In Studies in Vertebrate Evolution (eds K.A.Joysey and T.S.Kemp). Oliver & Boyd, Edinburgh, pp. 121–55.
- Reilly, Stephen M. and Elias, Jason A. 1998, Locomotion in alligator mississippiensis: kinematic effects of speed and posture and their relevance to the sprawling-to-erect paradigm Archived 2010-10-27 at the Wayback Machine, J. exp. Biol 201,2559-2574.
- García-París, M. & Deban, S. M. 1995. A novel antipredator mechanism in salamanders: rolling escape in Hydromantes platycephalus. Journal of Herpetology 29, 149-151.
- Tenaza, R. R. 1975. Pangolins rolling away from predation risks. Journal of Mammalogy 56, 257.