# Transpose

Matrix operation which flips rows with columns and vice versa

The transpose of a matrix A is another matrix where the rows of A are written as columns. Vectors can be transposed in the same way. We can write the transpose of A using different symbols such as AT , A, Atr and At.

## Examples

Here is the vector ${\begin{bmatrix}1&2\end{bmatrix}}$  being transposed:

• ${\begin{bmatrix}1&2\end{bmatrix}}^{\mathrm {T} }\!\!\;\!=\,{\begin{bmatrix}1\\2\end{bmatrix}}.$

Here are a few matrices being transposed:

• ${\begin{bmatrix}1&2\\3&4\end{bmatrix}}^{\mathrm {T} }\!\!\;\!=\,{\begin{bmatrix}1&3\\2&4\end{bmatrix}}.$
• ${\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}}^{\mathrm {T} }\!\!\;\!=\,{\begin{bmatrix}1&3&5\\2&4&6\end{bmatrix}}.\;$
• ${\begin{bmatrix}1&2&8\\3&4&3\\5&6&1\end{bmatrix}}^{\mathrm {T} }\!\!\;\!=\,{\begin{bmatrix}1&3&5\\2&4&6\\8&3&1\end{bmatrix}}.\;$

## Properties

Given two matrices A and B, the following properties related to the transpose are true:

• $(A^{T})^{-1}=(A^{-1})^{T}$
• $(AB)^{T}=B^{T}A^{T}$