DiGeorge syndrome

T cell deficiency disease that is the result of a large deletion of chromosome 22, which includes the DGS gene needed for development of the thymus and related glands with subsequent lack of T-cell production

DiGeorge syndrome, or 22q11.2 deletion syndrome, is a syndrome caused by the deletion of a small segment of chromosome 22.[7] The symptoms are caused by the lack of those genes.

DiGeorge syndrome
Other namesDiGeorge anomaly,[1][2] velocardiofacial syndrome (VCFS),[3] Shprintzen syndrome,[4] conotruncal anomaly face syndrome (CTAF),[5] Takao syndrome,[6] Sedlackova syndrome,[7] Cayler cardiofacial syndrome,[7] CATCH22,[7] 22q11.2 deletion syndrome[7]
A child with DiGeorge syndrome
SpecialtyMedical genetics
SymptomsVariable; commonly congenital heart problems, specific facial features, cleft palate[7]
ComplicationsKidney problems, hearing loss, autoimmune disorders[7]
CausesGenetic (typically new mutation)[7]
Diagnostic methodBased on symptoms and genetic testing[5]
Differential diagnosisSmith-Lemli-Opitz syndrome, Alagille syndrome, VACTERL, Oculo-auriculo-vertebral spectrum[5]
TreatmentInvolves many healthcare specialties[5]
PrognosisDepends on the specific symptoms[3]
Frequency1 in 4,000[7]

The symptoms often include congenital heart problems, facial features, infections, developmental delay, learning problems and cleft palate.[7] Other conditions include kidney problems, hearing loss and autoimmune disorders such as rheumatoid arthritis or Graves disease.[7]

DiGeorge syndrome is due to the deletion of 30 to 40 genes in the middle of chromosome 22 at a location known as 22q11.2.[3] About 90% of cases occur due to a new mutation during early development, while 10% are inherited from a person's parents.[7]

The condition is autosomal dominant: only one affected chromosome is needed for the condition to occur.[7] Diagnosis is suspected based on the symptoms and confirmed by genetic testing.[5]

Although there is no cure, treatment can improve symptoms.[3] This often includes efforts to improve the function of the many organ systems involved.[8] Long-term outcomes depend on the symptoms present and the severity of the heart and immune system problems.[3] With treatment, life expectancy may be normal.[9]

DiGeorge syndrome occurs in about 1 in 4,000 people.[7] The syndrome was first described in 1968 by American physician Angelo DiGeorge.[10][11] In late 1981, the underlying genetics were determined.[11]

References change

  1. Rapini, Ronald P.; Bolognia, Jean L.; Jorizzo, Joseph L. (2007). Dermatology: 2-Volume Set. St. Louis: Mosby. ISBN 978-1-4160-2999-1.
  2. James, William D.; Berger, Timothy G.; et al. (2006). Andrews' Diseases of the Skin: clinical Dermatology. Saunders Elsevier. ISBN 0-7216-2921-0.
  3. 3.0 3.1 3.2 3.3 3.4 "22q11.2 deletion syndrome". Genetic and Rare Diseases Information Center (GARD). Archived from the original on 5 July 2017. Retrieved 15 May 2017.
  4. Shprintzen, RJ; Goldberg, RB; Lewin, ML; Sidoti, EJ; Berkman, MD; Argamaso, RV; Young, D (January 1978). "A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome". The Cleft Palate Journal. 15 (1): 56–62. PMID 272242.
  5. 5.0 5.1 5.2 5.3 5.4 "Chromosome 22q11.2 Deletion Syndrome - NORD (National Organization for Rare Disorders)". NORD (National Organization for Rare Disorders). 2017. Archived from the original on 28 January 2017. Retrieved 10 July 2017.
  6. Burn, J; Takao, A; Wilson, D; Cross, I; Momma, K; Wadey, R; Scambler, P; Goodship, J (October 1993). "Conotruncal anomaly face syndrome is associated with a deletion within chromosome 22q11". Journal of Medical Genetics. 30 (10): 822–4. doi:10.1136/jmg.30.10.822. PMC 1016562. PMID 8230157.
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 "22q11.2 deletion syndrome". Genetics Home Reference. July 2013. Archived from the original on 13 May 2017. Retrieved 15 May 2017.
  8. Kobrynski LJ, Sullivan KE (October 2007). "Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes". Lancet. 370 (9596): 1443–52. doi:10.1016/S0140-6736(07)61601-8. PMID 17950858. S2CID 32595060.
  9. Goldman, Lee; Schafer, Andrew I. (2015). Goldman-Cecil Medicine E-Book. Elsevier Health Sciences. p. 702. ISBN 9780323322850. Archived from the original on 2017-11-05.
  10. DiGeorge, A (1968). "Congenital absence of the thymus and its immunologic consequences: concurrence with congenital hypoparathyroidism". March of Dimes-Birth Defects Foundation: 116–21.
  11. 11.0 11.1 Restivo, Angelo; Sarkozy, Anna; Digilio, Maria Cristina; Dallapiccola, Bruno; Marino, Bruno (February 2006). "22q11 Deletion syndrome: a review of some developmental biology aspects of the cardiovascular system". Journal of Cardiovascular Medicine. 7 (2): 77–85. doi:10.2459/01.JCM.0000203848.90267.3e. PMID 16645366. S2CID 25905258.
  • McDonald-McGinn DM, Emanuel BS, Zackai EH (2005). "22q11.2 Deletion Syndrome". In Pagon RA, Bird TD, Dolan CR, Stephens K (eds.). GeneReviews. University of Washington, Seattle. PMID 20301696. NBK1523.
  • Firth HV (2009). "22q11.2 Duplication". In Pagon RA, Bird TD, Dolan CR, Stephens K (eds.). GeneReviews. University of Washington, Seattle. PMID 20301749. NBK3823.

Other websites change

Classification
External resources