Ternary numeral system
numeral system, has three as its base
A ternary /ˈtɜːrnəri/ numeral system (also called base 3) has three as its base.[1] This means that you can only count with 0, 1, and 2. The first ten numbers in ternary are 00, 01, 02, 10, 11, 12, 20, 21, 22, 100. When all the digits in the number reach 2, you add a 1 in front and change everything else to 0. There is another system with the same name more specifically called the balanced ternary system. This system is called that way because 0 is the middle digit, with the other two digits being -1 and 1. That system is used in comparison logic and ternary computers.
Numeral systems by culture | |
---|---|
Hindu–Arabic numerals | |
Western Arabic Eastern Arabic Khmer |
Indian family Brahmi Thai |
East Asian numerals | |
Chinese Suzhou Counting rods |
Japanese Korean |
Alphabetic numerals | |
Abjad Armenian Cyrillic Ge'ez |
Hebrew Greek (Ionian) Āryabhaṭa |
Other systems | |
Attic Babylonian Egyptian Etruscan |
Mayan Roman Urnfield |
List of numeral system topics | |
Positional systems by base | |
Decimal (10) | |
2, 4, 8, 16, 32, 64 | |
1, 3, 9, 12, 20, 24, 30, 36, 60, more… | |
× | 1 | 2 | 10 | 11 | 12 | 20 | 21 | 22 | 100 |
1 | 1 | 2 | 10 | 11 | 12 | 20 | 21 | 22 | 100 |
2 | 2 | 11 | 20 | 22 | 101 | 110 | 112 | 121 | 200 |
10 | 10 | 20 | 100 | 110 | 120 | 200 | 210 | 220 | 1000 |
11 | 11 | 22 | 110 | 121 | 202 | 220 | 1001 | 1012 | 1100 |
12 | 12 | 101 | 120 | 202 | 221 | 1010 | 1022 | 1111 | 1200 |
20 | 20 | 110 | 200 | 220 | 1010 | 1100 | 1120 | 1210 | 2000 |
21 | 21 | 112 | 210 | 1001 | 1022 | 1120 | 1211 | 2002 | 2100 |
22 | 22 | 121 | 220 | 1012 | 1111 | 1210 | 2002 | 2101 | 2200 |
100 | 100 | 200 | 1000 | 1100 | 1200 | 2000 | 2100 | 2200 | 10000 |
Similar to a bit in binary, a ternary digit is called a trit.
Related pagesEdit
ReferencesEdit
- ↑ "Base 3: Ternary Numbers". expii. Retrieved 2021-01-27.