7000 (number)
number
7000 (seven thousand) is a natural number. It is between 6999 and 7001.
| ||||
---|---|---|---|---|
Cardinal | seven thousand | |||
Ordinal | 7000th (seven thousandth) | |||
Factorization | 23× 53× 7 | |||
Greek numeral | ,Ζ´ | |||
Roman numeral | VMM, or VII | |||
Unicode symbol(s) | VMM, vmm, VII, vii | |||
Binary | 11011010110002 | |||
Ternary | 1001210213 | |||
Quaternary | 12311204 | |||
Quinary | 2110005 | |||
Senary | 522246 | |||
Octal | 155308 | |||
Duodecimal | 407412 | |||
Hexadecimal | 1B5816 | |||
Vigesimal | HA020 | |||
Base 36 | 5EG36 | |||
Armenian | Ւ |
Important numbers 7001–7999
change7001 to 7099
change- 7021 – triangular number
- 7043 – Sophie Germain prime
- 7056 = 842
- 7057 – the cuban prime of x = y + 1.[1] It is also a super-prime
- 7073 – Leyland number[2]
- 7079 – a Sophie Germain prime and a safe prime
7100 to 7199
change- 7103 – a Sophie Germain prime and a sexy prime with 7109
- 7106 – an octahedral number[3]
- 7109 – a super-prime sexy prime with 7103
- 7121 – a Sophie Germain prime
- 7140 – a triangular number, and a pronic number. Since 7140/2 = 3570, 3570 is also a triangular number and tetrahedral number[4]
- 7151 – Sophie Germain prime
- 7155 – the number of 19-bead necklaces (turning over is allowed) where complements are the same[5]
- 7187 – safe prime
- 7192 – weird number[6]
- 7193 – Sophie Germain prime, super-prime
7200 to 7299
change- 7200 – pentagonal pyramidal number[7]
- 7211 – Sophie Germain prime
- 7225 = 852, centered octagonal number[8]
- 7230 = 362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442
- 7246 – centered heptagonal number[9]
- 7247 – safe prime
- 7260 – triangular number
- 7267 – decagonal number[10]
- 7272 – Kaprekar number[11]
- 7283 – super-prime
- 7291 – nonagonal number
7300 to 7399
change- 7316 – the number of 18-bead binary necklaces with beads of 2 colors where colors can be swapped, but turning over is not allowed[12]
- 7338 – Fine number[13]
- 7349 – Sophie Germain prime
- 7351 – super-prime, cuban prime of the form x = y + 1[1]
- 7381 – triangular number
- 7385 – Keith number[14]
- 7396 = 862
7400 to 7499
change- 7417 – super-prime
- 7433 – Sophie Germain prime
- 7471 – centered cube number[15]
- 7481 – super-prime, cousin prime
7500 to 7599
change- 7503 – triangular number
- 7523 – balanced prime, safe prime, super-prime
- 7537 – prime of the form 2p-1
- 7541 – Sophie Germain prime
- 7559 – safe prime
- 7560 – highly composite number[16]
- 7561 – Markov prime[17]
- 7568 – centered heptagonal number
- 7569 = 872, centered octagonal number[8]
- 7583 – balanced prime
7600 to 7699
change- 7607 – safe prime, super-prime
- 7612 – decagonal number[10]
- 7614 – nonagonal number
- 7626 – triangular number
- 7643 – Sophie Germain prime, safe prime
- 7647 – Keith number[14]
- 7649 – Sophie Germain prime, super-prime
- 7691 – Sophie Germain prime
- 7699 – super-prime, emirp, the sum of first 60 primes, the first prime above 281 to be the sum of the first k primes for some k
7700 to 7799
change- 7703 – safe prime
- 7710 = number of primitive polynomials of degree 17 over GF(2)[18]
- 7714 – square pyramidal number[19]
- 7727 – safe prime
- 7739 – member of the Padovan sequence[20]
- 7741 = number of trees with 15 unlabeled nodes[21]
- 7744 = 882, square palindrome not ending in 0
- 7750 – triangular number
- 7753 – super-prime
- 7770 – tetrahedral number[4]
- 7776 = 65, number of primitive polynomials of degree 18 over GF(2)[18]
- 7777 – Kaprekar number,[11] repdigit[22]
7800 to 7899
change- 7810 – ISO/IEC 7810 is the ISO's standard for physical characteristics of identification cards
- 7821 – n=6 value of
- 7823 – Sophie Germain prime, safe prime, balanced prime
- 7825 – magic constant of n × n normal magic square and n-Queens Problem for n = 25. It is also the first counterexample in the Boolean Pythagorean triples problem.
- 7841 – Sophie Germain prime, balanced prime, super-prime
- 7875 – triangular number
- 7883 – Sophie Germain prime, super-prime
- 7897 – centered heptagonal number
7900 to 7999
change- 7901 – Sophie Germain prime
- 7909 – Keith number[14]
- 7912 – weird number[6]
- 7919 – 1000th prime number[23]
- 7920 – the order of the Mathieu group M11, the smallest sporadic simple group
- 7921 = 892, centered octagonal number
- 7944 – nonagonal number
- 7957 – super-Poulet number[24]
- 7965 – decagonal number[10]
- 7979 – highly cototient number
Prime numbers
changeThere are 107 prime numbers between 7000 and 8000:[25][26]
- 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993
References
change- ↑ 1.0 1.1 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ 4.0 4.1 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ 6.0 6.1 "Sloane's A006037 : Weird numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ 8.0 8.1 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ 10.0 10.1 10.2 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ 11.0 11.1 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Sloane, N. J. A. (ed.). "Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence > 0 on an n-set; also number of ordered rooted trees with n edges having root of even degree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
- ↑ 14.0 14.1 14.2 "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ 18.0 18.1 Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ↑ Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Sloane, N. J. A. (ed.). "Sequence A010785 (Repdigit numbers, or numbers whose digits are all equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ "7919". The Prime Pages. University of Tennessee. Retrieved April 25, 2017.
- ↑ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ↑ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.