7000 (number)

number

7000 (seven thousand) is a natural number. It is between 6999 and 7001.

← 6999 7000 7001 →
Cardinalseven thousand
Ordinal7000th
(seven thousandth)
Factorization23× 53× 7
Greek numeral,Ζ´
Roman numeralVMM, or VII
Unicode symbol(s)VMM, vmm, VII, vii
Binary11011010110002
Ternary1001210213
Quaternary12311204
Quinary2110005
Senary522246
Octal155308
Duodecimal407412
Hexadecimal1B5816
VigesimalHA020
Base 365EG36
ArmenianՒ

Important numbers 7001–7999

change

7001 to 7099

change

7100 to 7199

change
  • 7103 – a Sophie Germain prime and a sexy prime with 7109
  • 7106 – an octahedral number[3]
  • 7109 – a super-prime sexy prime with 7103
  • 7121 – a Sophie Germain prime
  • 7140 – a triangular number, and a pronic number. Since 7140/2 = 3570, 3570 is also a triangular number and tetrahedral number[4]
  • 7151 – Sophie Germain prime
  • 7155 – the number of 19-bead necklaces (turning over is allowed) where complements are the same[5]
  • 7187 – safe prime
  • 7192weird number[6]
  • 7193 – Sophie Germain prime, super-prime

7200 to 7299

change

7300 to 7399

change
  • 7316 – the number of 18-bead binary necklaces with beads of 2 colors where colors can be swapped, but turning over is not allowed[12]
  • 7338 – Fine number[13]
  • 7349 – Sophie Germain prime
  • 7351super-prime, cuban prime of the form x = y + 1[1]
  • 7381 – triangular number
  • 7385Keith number[14]
  • 7396 = 862

7400 to 7499

change

7500 to 7599

change

7600 to 7699

change
  • 7607 – safe prime, super-prime
  • 7612 – decagonal number[10]
  • 7614 – nonagonal number
  • 7626 – triangular number
  • 7643 – Sophie Germain prime, safe prime
  • 7647 – Keith number[14]
  • 7649 – Sophie Germain prime, super-prime
  • 7691 – Sophie Germain prime
  • 7699super-prime, emirp, the sum of first 60 primes, the first prime above 281 to be the sum of the first k primes for some k

7700 to 7799

change
  • 7703 – safe prime
  • 7710 = number of primitive polynomials of degree 17 over GF(2)[18]
  • 7714square pyramidal number[19]
  • 7727 – safe prime
  • 7739 – member of the Padovan sequence[20]
  • 7741 = number of trees with 15 unlabeled nodes[21]
  • 7744 = 882, square palindrome not ending in 0
  • 7750 – triangular number
  • 7753super-prime
  • 7770 – tetrahedral number[4]
  • 7776 = 65, number of primitive polynomials of degree 18 over GF(2)[18]
  • 7777 – Kaprekar number,[11] repdigit[22]

7800 to 7899

change
  • 7810ISO/IEC 7810 is the ISO's standard for physical characteristics of identification cards
  • 7821 – n=6 value of  
  • 7823 – Sophie Germain prime, safe prime, balanced prime
  • 7825magic constant of n × n normal magic square and n-Queens Problem for n = 25. It is also the first counterexample in the Boolean Pythagorean triples problem.
  • 7841 – Sophie Germain prime, balanced prime, super-prime
  • 7875 – triangular number
  • 7883 – Sophie Germain prime, super-prime
  • 7897 – centered heptagonal number

7900 to 7999

change

Prime numbers

change

There are 107 prime numbers between 7000 and 8000:[25][26]

7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993

References

change
  1. 1.0 1.1 "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  2. "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  3. "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  4. 4.0 4.1 "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  5. Sloane, N. J. A. (ed.). "Sequence A000011 (Number of n-bead necklaces (turning over is allowed) where complements are equivalent)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. 6.0 6.1 "Sloane's A006037 : Weird numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  7. "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  8. 8.0 8.1 "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  9. "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  10. 10.0 10.1 10.2 "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  11. 11.0 11.1 "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  12. Sloane, N. J. A. (ed.). "Sequence A000013 (Definition (1): Number of n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. Sloane, N. J. A. (ed.). "Sequence A000957 (Fine's sequence (or Fine numbers): number of relations of valence > 0 on an n-set; also number of ordered rooted trees with n edges having root of even degree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  14. 14.0 14.1 14.2 "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  15. "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  16. "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  17. "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  18. 18.0 18.1 Sloane, N. J. A. (ed.). "Sequence A011260 (Number of primitive polynomials of degree n over GF(2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  20. "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  21. Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. Sloane, N. J. A. (ed.). "Sequence A010785 (Repdigit numbers, or numbers whose digits are all equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. "7919". The Prime Pages. University of Tennessee. Retrieved April 25, 2017.
  24. "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  25. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.