9000 (number)

number

9000 (nine thousand) is the natural number after 8999 and before 9001.

← 8999 9000 9001 →
Cardinalnine thousand
Ordinal9000th
(nine thousandth)
Factorization23× 32× 53
Greek numeral,Θ´
Roman numeralMX, or IX
Unicode symbol(s)MX, mx, IX, ix
Binary100011001010002
Ternary1101001003
Quaternary20302204
Quinary2420005
Senary1054006
Octal214508
Duodecimal526012
Hexadecimal232816
Vigesimal12A020
Base 366Y036
ArmenianՔ

Selected numbers: 9001–9999

change

9001 to 9099

change

9100 to 9199

change

9200 to 9299

change

9300 to 9399

change

9400 to 9499

change

9500 to 9599

change
  • 9511 - prime number
  • 9521 - prime number
  • 9533 - prime number
  • 9539 – Sophie Germain prime, super-prime
  • 9551 – first prime followed by as many as 35 consecutive composite numbers
  • 9587 – safe prime, follows 35 consecutive composite numbers
  • 9591 – triangular number
  • 9592 - amount of prime numbers under 100,000


9600 to 9699

change
  • 9601Proth prime
  • 9604 = 982
  • 9619super-prime
  • 9629 – Sophie Germain prime
  • 9647 – centered heptagonal number
  • 9661 – super-prime, sum of nine consecutive primes (1049 + 1051 + 1061 + 1063 + 1069 + 1087 + 1091 + 1093 + 1097)
  • 9689 – Sophie Germain prime
  • 9699 – nonagonal number

9700 to 9799

change
  • 9721 – prime of the form 2p-1
  • 9730 – triangular number
  • 9739super-prime
  • 9743 – safe prime
  • 9791 – Sophie Germain prime

9800 to 9899

change

9900 to 9999

change
  • 9901 – unique prime, sum of seven consecutive primes (1381 + 1399 + 1409 + 1423 + 1427 + 1429 + 1433)[13]
  • 9905 – number of compositions of 16 whose run-lengths are either weakly increasing or weakly decreasing[14]
  • 9923super-prime, probably smallest certainly executable prime number on x86 MS-DOS[15]
  • 9949 – sum of nine consecutive primes (1087 + 1091 + 1093 + 1097 + 1103 + 1109 + 1117 + 1123 + 1129)
  • 9973 – super-prime
  • 9999Kaprekar number, repdigit

Prime numbers

change

There are 112 prime numbers between 9000 and 10000:[16][17]

9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973

References

change
  1. Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers: n^3 + (n+1)^3.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Sloane, N. J. A. (ed.). "Sequence A002559". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime) of the form A019328(r)/gcd(A019328(r),r) in order (periods r are given in A051627).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "Sequence A002411". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "Sequence A000292". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. Brunner, Amy; Caldwell, Chris K.; Krywaruczenko, Daniel & Lownsdale, Chris (2009). "GENERALIZED SIERPIŃSKI NUMBERS TO BASE b" (PDF). 数理解析研究所講究録 [Notes from the Institute of Mathematical Analysis (in, New Aspects of Analytic Number Theory)]. 1639. Kyoto: RIMS: 69–79. hdl:2433/140555. S2CID 38654417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Sloane, N. J. A. (ed.). "Sequence A005900". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes: primes which are the difference of two consecutive cubes.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers: abundant (A005101) but not pseudoperfect (A005835).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. Sloane, N. J. A. (ed.). "Sequence A005479 (Prime Lucas numbers (cf. A000032).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. Sloane, N. J. A. (ed.). "Sequence A000330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  13. "Sloane's A040017 : Unique period primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
  14. Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  15. An Executable Prime Number?, archived from the original on 2010-02-10
  16. Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.