Open main menu

Copernicium

chemical element with atomic number 112

Copernicium (former Ununbium) is a chemical element in the Periodic Table. It is also named eka-mercury. It has the symbol Cn. It has the atomic number 112. It is a transuranium element.

Copernicium,  112Cn
General properties
Pronunciation/ˌkpərˈnɪsiəm/ (KOH-pər-NIS-ee-əm)
Mass number285 (most stable isotope)
Copernicium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Hg

Cn

(Uhh)
roentgeniumcoperniciumnihonium
Atomic number (Z)112
Groupgroup 12
Periodperiod 7
Blockd-block
Element category  post-transition metal, alternatively considered a transition metal
Electron configuration[Rn] 5f14 6d10 7s2 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 2 (predicted)
Physical properties
Phase at STPunknown phase (predicted)
Boiling point357+112
−108
 K ​(84+112
−108
 °C, ​183+202
−194
 °F)[2]
Density when liquid (at m.p.)23.7 g/cm3 (predicted)[1]
Atomic properties
Oxidation states0, (+1), +2, (+4) (parenthesized: prediction)[1][3][4]
Ionization energies
  • 1st: 1155 kJ/mol
  • 2nd: 2170 kJ/mol
  • 3rd: 3160 kJ/mol
  • (more) (all estimated)[1]
Atomic radiuscalculated: 147 pm[1][4] (predicted)
Covalent radius122 pm (predicted)[5]
Other properties
Natural occurrencesynthetic
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for copernicium

(predicted)[6]
CAS Number54084-26-3
History
Namingafter Nicolaus Copernicus
DiscoveryGesellschaft für Schwerionenforschung (1996)
Main isotopes of copernicium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
277Cn syn 0.69 ms α 273Ds
281Cn syn 0.18 s[7] α 277Ds
282Cn syn 0.91 ms SF
283Cn syn 4.2 s[8] 90% α 279Ds
10% SF
EC? 283Rg
284Cn syn 98 ms SF
285Cn syn 28 s α 281Ds
286Cn syn 8.45 s ? SF
| references

The element is named in honor of Nicolaus Copernicus.

Using periodic trends, people think that it will be a liquid metal. It is likely to be more volatile than mercury.

HistoryEdit

Copernicium was first made on February 9, 1996 at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany. Copernicium was made by nuclear fusion of a zinc atom with a lead atom. The zinc nuclei was bombarded on to a lead target in a machine named a heavy ion accelerator.

The element was made in 2000 and 2004 at the Joint Institute for Nuclear Research in Russia.

In May 2006 in the Joint Institute for Nuclear Research checked that it had been made using a different method. They identified the last atoms that were made from radioactive decay of ununbium.

In February 2010 IUPAC officially approved the name copernicium and symbol Cn.[10]

ReferencesEdit

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. Eichler, R.; Aksenov, N. V.; Belozerov, A. V.; Bozhikov, G. A.; Chepigin, V. I.; Dmitriev, S. N.; Dressler, R.; Gäggeler, H. W. et al. (2008). "Thermochemical and physical properties of element 112". Angewandte Chemie 47 (17): 3262–6. doi:10.1002/anie.200705019. http://onlinelibrary.wiley.com/doi/10.1002/anie.200705019/abstract. Retrieved 5 November 2013. 
  3. Gäggeler, Heinz W.; Türler, Andreas (2013). "Gas Phase Chemistry of Superheavy Elements". The Chemistry of Superheavy Elements. Springer Science+Business Media. pp. 415–483. Retrieved 2018-04-21.
  4. 4.0 4.1 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry 21: 89–144. doi:10.1007/BFb0116498. https://www.researchgate.net/publication/225672062_Superheavy_elements_a_prediction_of_their_chemical_and_physical_properties. Retrieved 4 October 2013. 
  5. Chemical Data. Copernicium - Cn, Royal Chemical Society
  6. Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K. (January 2018). "Super heavy element Copernicium: Cohesive and electronic properties revisited". Solid State Communications 269: 16–22. doi:10.1016/j.ssc.2017.10.009. https://www.sciencedirect.com/science/article/pii/S0038109817303344. Retrieved 28 March 2018. 
  7. Utyonkov, V. K.; Brewer, N. T.; Oganessian, Yu. Ts.; Rykaczewski, K. P.; Abdullin, F. Sh.; Dimitriev, S. N.; Grzywacz, R. K.; Itkis, M. G. et al. (30 January 2018). "Neutron-deficient superheavy nuclei obtained in the 240Pu+48Ca reaction". Physical Review C 97 (14320): 1–10. doi:10.1103/PhysRevC.97.014320. 
  8. Chart of Nuclides. Brookhaven National Laboratory
  9. Soverna S 2004, 'Indication for a gaseous element 112,' in U Grundinger (ed.), GSI Scientific Report 2003, GSI Report 2004-1, p. 187, ISSN 0174-0814
  10. "Element 112 is Named Copernicium". Retrieved 2010-02-20.

Other websitesEdit