chemical element with atomic number of 54 and heaviest stable noble gas

Xenon is a non-metal chemical element. It has the chemical symbol Xe and atomic number 54. It is one of the few elements that are a gas at the standard temperature and pressure.

Xenon, 00Xe
A xenon-filled discharge tube glowing light blue
Appearancecolorless gas, exhibiting a blue glow when placed in an electric field
Standard atomic weight Ar°(Xe)
in the Earth's crust2 × 10-9%
in the solar system1.56 × 10-8%
Xenon in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Groupgroup 18 (noble gases)
Periodperiod 5
Block  p-block
Electron configuration[Kr] 4d10 5s2 5p6
Electrons per shell2, 8, 18, 18, 8
Physical properties
Phase at STPgas
Melting point161.40 K ​(−111.75 °C, ​−169.15 °F)
Boiling point165.051 K ​(−108.099 °C, ​−162.578 °F)
Density (at STP)5.894 g/L
when liquid (at b.p.)2.942 g/cm3[4]
Triple point161.405 K, ​81.77 kPa[5]
Critical point289.733 K, 5.842 MPa[5]
Heat of fusion2.27 kJ/mol
Heat of vaporization12.64 kJ/mol
Molar heat capacity21.01[6] J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 83 92 103 117 137 165
Atomic properties
Oxidation states0, +2, +4, +6, +8 (rarely more than 0; a weakly acidic oxide)
ElectronegativityPauling scale: 2.6
Ionization energies
  • 1st: 1170.4 kJ/mol
  • 2nd: 2046.4 kJ/mol
  • 3rd: 3099.4 kJ/mol
Covalent radius140±9 pm
Van der Waals radius216 pm
Color lines in a spectral range
Spectral lines of xenon
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for xenon
Speed of soundgas: 178 m·s−1
liquid: 1090 m/s
Thermal conductivity5.65×10−3 W/(m⋅K)
Magnetic orderingdiamagnetic[7]
Molar magnetic susceptibility−43.9×10−6 cm3/mol (298 K)[8]
CAS Number7440-63-3
Discovery and first isolationWilliam Ramsay and Morris Travers (1898)
Isotopes of xenon
Main isotopes[9] Decay
abun­dance half-life (t1/2) mode pro­duct
124Xe 0.095% 1.8×1022 y[10] εε 124Te
125Xe synth 16.9 h ε 125I
126Xe 0.0890% stable
127Xe synth 36.345 d ε 127I
128Xe 1.91% stable
129Xe 26.4% stable
130Xe 4.07% stable
131Xe 21.2% stable
132Xe 26.9% stable
133Xe synth 5.247 d β 133Cs
134Xe 10.4% stable
135Xe synth 9.14 h β 135Cs
136Xe 8.86% 2.165×1021 y[11][12] ββ 136Ba
 Category: Xenon
| references

History change

Sir William Ramsay and M. W. Travers discovered this element in 1898. The element's name came from the Greek word xenos, which means 'stranger'.

Chemistry change

Xenon belongs to the group of the noble gases. Noble gases are very unreactive. However, in 1962, chemists have found that xenon can react with fluorine under special conditions, such as high pressure and high temperature. It is not known why xenon behaves differently under these circumstances. There are also some compounds with oxygen. The gas is not very reactive, because if fulfills the octet rule. This means that a lot of energy is needed to remove an electron from xenon. This activation energy for xenon is 1172 kJ/mol. To remove a second electron from xenon, an energy of 2046.4 kJ/mol is needed.

Known oxidation states of xenon are 0, +1, +2, +4, +6 and +8. However, the most stable form is pure xenon, or the xenon's oxidation state of 0. Xenon has 8 stable isotopes and more than 30 unstable isotopes.

Uses change

Xenon gas is used in electron tubes, bactericidal lamps, trobe lamps, and lamps used to excite ruby lasers. It has the atomic mass of 131.294 and is the 5th inert gas in the inner gas group.

Xenon is also a trace gas in the atmosphere, occurring at 87 ±1 nL/L (parts per billion) or approximately 1 in 11.5 million. It is also emitted from some mineral springs.

Xenon in shaped Geissler tubes.

Related pages change

References change

  1. "xenon". Oxford English Dictionary. Vol. 20 (2nd ed.). Oxford University Press. 1989.
  2. "Xenon". Dictionary.com Unabridged. 2010. Retrieved May 6, 2010.
  3. "Standard Atomic Weights: Xenon". CIAAW. 1999.
  4. "Xenon". Gas Encyclopedia. Air Liquide. 2009.
  5. 5.0 5.1 Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 4.123. ISBN 1439855110.
  6. Hwang, Shuen-Cheng; Weltmer, William R. (2000). "Helium Group Gases". Kirk-Othmer Encyclopedia of Chemical Technology. Wiley. pp. 343–383. doi:10.1002/0471238961.0701190508230114.a01. ISBN 0-471-23896-1.
  7. Magnetic susceptibility of the elements and inorganic compounds, in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  8. Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  10. "Observation of two-neutrino double electron capture in 124Xe with XENON1T". Nature. 568 (7753): 532–535. 2019. doi:10.1038/s41586-019-1124-4.
  11. 11.0 11.1 Albert, J. B.; Auger, M.; Auty, D. J.; Barbeau, P. S.; Beauchamp, E.; Beck, D.; Belov, V.; Benitez-Medina, C.; Bonatt, J.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Chaves, J.; Cleveland, B.; Cook, S.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Devoe, R.; Delaquis, S.; Dobi, A.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; et al. (2014). "Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector". Physical Review C. 89. arXiv:1306.6106. Bibcode:2014PhRvC..89a5502A. doi:10.1103/PhysRevC.89.015502. Cite error: Invalid <ref> tag; name "Albert2013" defined multiple times with different content
  12. Redshaw, M.; Wingfield, E.; McDaniel, J.; Myers, E. (2007). "Mass and Double-Beta-Decay Q Value of 136Xe". Physical Review Letters. 98 (5): 53003. Bibcode:2007PhRvL..98e3003R. doi:10.1103/PhysRevLett.98.053003.