Open main menu

Nihonium

chemical element with atomic number 113

Nihonium(ニホニウム) is a chemical element. It is also named eka-thallium. It has the symbol Nh. It has the atomic number 113. It is a transuranium element.The name nihonium from Japan"s name nihonニホン.

Nihonium,  113Nh
General properties
Pronunciation/nɪˈhniəm/ (ni-HOH-nee-əm)
Mass number286 (most stable isotope)
Nihonium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Tl

Nh

(Uhs)
coperniciumnihoniumflerovium
Atomic number (Z)113
Groupgroup 13 (boron group)
Periodperiod 7
Blockp-block
Element category  unknown chemical properties, but probably a post-transition metal
Electron configuration[Rn] 5f14 6d10 7s2 7p1 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 3 (predicted)
Physical properties
Phase at STPunknown phase (predicted)[1][2][3]
Melting point700 K ​(430 °C, ​810 °F) (predicted)[1]
Boiling point1430 K ​(1130 °C, ​2070 °F) (predicted)[1][4]
Density (near r.t.)16 g/cm3 (predicted)[4]
Heat of fusion7.61 kJ/mol (extrapolated)[3]
Heat of vaporization130 kJ/mol (predicted)[2][4]
Atomic properties
Oxidation states(−1), (+1), (+3), (+5) (predicted)[1][4][5]
Ionization energies
  • 1st: 704.9 kJ/mol (predicted)[1]
  • 2nd: 2240 kJ/mol (predicted)[4]
  • 3rd: 3020 kJ/mol (predicted)[4]
  • (more)
Atomic radiusempirical: 170 pm (predicted)[1]
Covalent radius172–180 pm (extrapolated)[3]
Other properties
Natural occurrencesynthetic
Crystal structurehexagonal close-packed (hcp)
Hexagonal close-packed crystal structure for nihonium

(extrapolated)[6]
CAS Number54084-70-7
History
NamingAfter Japan (Nihon in Japanese)
DiscoveryRiken (Japan, first undisputed claim 2004)
JINR (Russia) and Livermore (US, first announcement 2003)
Main isotopes of nihonium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
278Nh syn 1.4 ms α 274Rg
282Nh syn 73 ms α 278Rg
283Nh syn 75 ms α 279Rg
284Nh syn 0.91 s α 280Rg
EC 284Cn
285Nh syn 4.2 s α 281Rg
286Nh syn 9.5 s α 282Rg
287Nh[7] syn 5.5 s? α 283Rg
290Nh[8] syn 2 s? α 286Rg
| references

Nihonium does not exist in nature, but is artificial. It is made from the alpha decay of moscovium.

There are no known uses for nihonium. What nihonium looks like is not known because not enough has been made to see it with human eyesight. Based on trends in the Periodic Table it could be soft, silver color, very reactive metal like sodium.

HistoryEdit

On February 1 2004, Nihonium and moscovium were discovered. A team of Russian scientists at Dubna from the Joint Institute for Nuclear Research and American scientists at the Lawrence Livermore National Laboratory first reported the chemical elements.

On September 28 2004, a team of Japanese scientists said that they had made the element.[9],[10],[11]

In May 2006, in the Joint Institute for Nuclear Research made nihonium using a different method. They found the identity of the last products of the radioactive decay of the nihonium they made.

NameEdit

Nihonium is a temporary IUPAC systematic element name. Scientists from Japan suggested the name japonium (symbol Jp) or rikenium (Rk).[12]

ReferencesEdit

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. 2.0 2.1 Seaborg, Glenn T. (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16. Italic or bold markup not allowed in: |publisher= (help)
  3. 3.0 3.1 3.2 Bonchev, Danail; Kamenska, Verginia (1981). "Predicting the Properties of the 113–120 Transactinide Elements". Journal of Physical Chemistry 85 (9): 1177–1186. doi:10.1021/j150609a021. https://www.researchgate.net/publication/239657207_Predicting_the_properties_of_the_113_to_120_transactinide_elements. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties". Recent Impact of Physics on Inorganic Chemistry 21: 89–144. doi:10.1007/BFb0116498. https://www.researchgate.net/publication/225672062_Superheavy_elements_a_prediction_of_their_chemical_and_physical_properties. Retrieved 4 October 2013. 
  5. Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". In Barysz, Maria; Ishikawa, Yasuyuki (eds.). Relativistic Methods for Chemists. Springer. pp. 63–67. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9974-8.
  6. Keller, O. L., Jr.; Burnett, J. L.; Carlson, T. A.; Nestor, C. W., Jr. (1969). "Predicted Properties of the Super Heavy Elements. I. Elements 113 and 114, Eka-Thallium and Eka-Lead". The Journal of Physical Chemistry 74 (5): 1127−1134. doi:10.1021/j100700a029. 
  7. (2016) "Remarks on the Fission Barriers of SHN and Search for Element 120" in Exotic Nuclei. : 155–164. 
  8. Hofmann, S.; Heinz, S.; Mann, R.; Maurer, J.; Münzenberg, G.; Antalic, S.; Barth, W.; Burkhard, H. G. et al. (2016). "Review of even element super-heavy nuclei and search for element 120". The European Physics Journal A 2016 (52). doi:10.1140/epja/i2016-16180-4. 
  9. Morita et al., Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn, n)278113, J. Phys. Soc. Jpn., Vol. 73, No.10.
  10. press release in Japanese
  11. Japanese scientists create heaviest ever element
  12. Discovering element 113 Riken News. Accessed 23 November 2006.

Other websitesEdit